Разгон в космосе: как гравитация помогает летать в звездные дали? Механика гравитационных маневров Что такое гравитационная праща. Как она действует

Трудно представить, сколько топлива сэкономили космическим аппаратам гравитационные маневры. Они помогают достичь окрестностей планет-гигантов и даже выйти навсегда за пределы Солнечной системы. Даже для исследования относительно близких к нам комет и астероидов можно рассчитать наиболее экономичную траекторию с применением гравитационных маневров. Когда же возникла идея "космической пращи"? И когда она была впервые осуществлена?

Гравитационный маневр как природное явление впервые был обнаружен астрономами прошлого, которые поняли, что значительные изменения орбит комет, их периода (а, следовательно, и их орбитальной скорости) происходят под гравитационным влиянием планет. Так, после перехода короткопериодических комет из пояса Койпера во внутреннюю часть Солнечной системы значительное преобразование их орбит происходит именно под гравитационным влиянием массивных планет, при обмене с ними угловым моментом, без каких-либо энергетических затрат.

Саму идею использовать гравитационные маневры для достижения цели космического полета разработал Майкл Минович в 60-х годах, когда, будучи студентом, он проходил практику в Лаборатории реактивного движения NASA. Впервые идея гравитационного маневра была реализована в траектории полета автоматической межпланетной станции "Ма-ринер-10", когда для достижения Меркурия было использовано гравитационное поле Венеры.

В "чистом" гравитационном маневре правило равенства модуля скоростей до и после сближения с небесным телом сохраняется неукоснительно. Выигрыш становится очевидным, если от планетоцентрических координат перейти к гелиоцентрическим. Это хорошо видно на приведенной здесь схеме, адаптированной из книги В. И. Левантовского "Механика космического полета". Слева показана траектория аппарата, как ее видит наблюдатель на планете Р. Скорость v вх на "местной бесконечности" по модулю равна v вых. Все, что заметит наблюдатель, это изменение направления движения аппарата. Однако наблюдатель, находящийся в гелиоцентрических координатах, увидит значительное изменение скорости аппарата. Поскольку сохраняется только модуль скорости аппарата относительно планеты, а он сравним с модулем орбитальной скорости самой планеты, результирующая векторная сумма скоростей может стать как большей, так и меньшей скорости аппарата перед сближением. Справа показана векторная диаграмма такого обмена угловыми моментами. Через v вх и v вых обозначены равные скорости входа и выхода аппарата относительно планеты, а через V сбл, V удал и V пл - скорости сближения и удаления аппарата и орбитальная скорость планеты в гелиоцентрических координатах. Приращение ΔV - этот тот импульс скорости, который планета сообщила аппарату. Конечно тот момент, который передает планете сам аппарат, пренебрежимо мал.

Таким образом, соответствующим выбором трассы сближения можно не только изменить направление, но и значительно увеличить скорость аппарата без всяких затрат его энергоисточников.

На этой схеме не показано, что вначале скорость резко возрастает, а затем падает до конечной величины. Баллистиков это обычно не заботит, они воспринимают обмен угловыми моментами как "гравитационный удар" со стороны планеты, длительность которого пренебрежимо мала по сравнению с полной длительностью полета.

Критическими в гравитационном маневре оказываются масса планеты М, прицельная дальность d и скорость v вх. Интересно, что приращение скорости ΔV оказывается максимальным, когда v вх равно круговой скорости у поверхности планеты.

Таким образом, наиболее выгодны маневры у планет-гигантов, причем они заметно сокращают длительность полета. Используются также маневры у Земли и Венеры, но это значительно увеличивает длительность космического путешествия.

После успеха экспедиции "Маринера-10" гравитационные маневры применялись во многих космических экспедициях. Например, исключительно успешной была миссия аппаратов "Вояджер", с помощью которых были проведены исследования планет-гигантов и их спутников. Аппараты были запущены в США осенью 1977 года и достигли первой цели миссии, планеты Юпитер, в 1979 году. После выполнения исследовательской программы у Юпитера и исследований его спутников аппараты совершили гравитационный маневр (с использованием поля тяготения Юпитера), что позволило направить их по несколько различающимся траекториям к Сатурну, которого они достигли в 1980 и 1981 годах соответственно. Далее "Вояджер-1" выполнил сложный маневр, чтобы пройти на расстоянии всего лишь 5000 км от спутника Сатурна Титан, а затем оказался на траектории ухода из Солнечной системы.

"Вояджер-2" также проделал еще один гравитационный маневр и, несмотря на некоторые возникшие технические проблемы, был направлен к седьмой планете, Урану, встреча с которым состоялась в начале 1986 года. После сближения с Ураном в его поле был выполнен еще один гравитационный маневр, и "Вояджер-2" направился к Нептуну. Здесь гравитационный маневр позволил аппарату достаточно тесно сблизиться со спутником Нептуна Тритоном.

В 1986 году гравитационный маневр у Венеры дал возможность советским космическим аппаратам "ВЕГА-1" и "ВЕГА-2" встретиться с кометой Галлея.

В самом конце 1995 года Юпитера достиг новый аппарат, "Галилео", трасса полета которого была выбрана как цепь гравитационных маневров в полях тяготения Земли и Венеры. Это позволило аппарату за 6 лет дважды посетить пояс астероидов и сблизиться с довольно крупными телами Гаспрой и Идой, да еще дважды вернуться к Земле. После запуска в США осенью 1989 г. аппарат был направлен к Венере, с которой сблизился в феврале 1990 г., а затем в декабре 1990 г. вернулся к Земле. Снова был выполнен гравитационный маневр, и аппарат ушел к внутренней части пояса астероидов. Чтобы достичь Юпитера, в декабре 1992 г. "Галилео" снова вернулся к Земле и, наконец, лег на курс полета к Юпитеру.

В октябре 1997 года, также в США, к Сатурну был запущен аппарат "Кассини". Программа его полета предусматривает 4 гравитационных маневра: два у Венеры и по одному у Земли и у Юпитера. После первого маневра в сближении с Венерой (в апреле 1998 г.) аппарат ушел к орбите Марса и снова (без участия Марса) возвратился к Венере. Второй маневр у Венеры (июнь 1999 г.) возвратил "Кассини" к Земле, где также был выполнен гравитационный маневр (август 1999 г.). Так аппарат набрал достаточную скорость для быстрого полета к Юпитеру, где в конце декабря 2000 г. будет выполнен его последний маневр на пути к Сатурну. Цели аппарат должен достичь в июле 2004 года.

Л. В.Ксанфомалити, доктор физ.-мат. наук, заведующий лабораторией Института космических исследований.

Гравитационный маневр — это способ изменить направление движения космического аппарата, а так же увеличить или уменьшить его скорость, используя гравитацию массивных объектов и не используя ценное топливо на борту космического аппарата.

Вероятно, о возможности подобного гравитационного маневра догадывались ещё античные астрономы и звездочеты древнего Вавилона, когда наблюдали движения комет, меняющих свою траекторию и скорость, когда пролетали рядом с другими небесными телами.

Принцип действия гравитационного маневра можно описать следующим образом: если космический аппарат сближается с внутренней стороной орбиты планеты, то его скорость замедляется. Если же аппарат пролет с внешней стороны орбиты планеты, то его скорость увеличится. Этот принцип действия напоминает работу пращника, метающего снаряды. Именно поэтому часто гравитационный маневр называют «гравитационной пращей».

Использование гравитационного маневра для торможения | www.commons.wikimedia.org/wiki/File:Swingby_dec_anim.gif Использование гравитационного маневра для ускорения | www.commons.wikimedia.org/wiki/File:Swingby_acc_anim.gif Следует понимать, что в системе отсчета, связанной с небесным объектом, который используется для гравитационного маневра (например, зонд проходит около Венеры), никакого положительно эффекта для космического аппарата наблюдаться не будет, кроме изменения его траектории полета. Однако относительно других небесных тел (например, Солнца) космический аппарат станет двигаться быстрее/медленнее.

Преимущества гравитационного маневра очевидны. Он позволяет увеличивать/замедлять скорость без необходимости включать двигатели, что ведет к большой экономии топлива. Меньше топлива — больше полезной нагрузки. Соответственно, на один космический аппарат умещается столько полезной нагрузки, сколько бы пришлось нести двум аппаратам, которые не использовали эффект «гравитационной пращи». Сэкономленные в результате деньги можно распределить на другие космические проекты.

Наверное, самым знаменитым аппаратом, использовавшим гравитационный маневр, стал американский «Вояджер-2». Благодаря системе разгонов и торможений, он слетал в турне по Солнечной системе по маршруту «Земля-Юпитер-Сатурн-Уран-Нептун». А сейчас, получив ускорение от планет, уже вышел за границы Солнечной системы.

Не менее интересен аппарат «Вояджер 1». Его текущая скорость в 17 км/с, достигнутая при помощи гравитационных маневров, является самой высокой среди всех рукотворных объектов человека, хотя при старте она была на порядок меньше.

К комбинации гравитационных маневров была вынуждена прибегнуть межпланетная станция «Кассини». Два раза использовав гравитационное поле Венеры и по одному разу Земли и Юпитера, аппарат разогнался до необходимой скорости, использовав при этом в 25 раз (!) меньше топлива, чем ему понадобилось бы без использования гравитационных маневров.

Это интересно: г равитационный маневр выгоднее всего применять вблизи объектов, обладающих большей скоростью и большей гравитацией. Идеальный кандидат на место такого объекта очевиден: звезды. Умы ученых давно будоражит идея пролететь на космическом аппарате вблизи нейтронных звезд. Согласно подсчетам, такой маневр смог бы разогнать корабль до 1/3 скорости света. Вот это величина! С такой скоростью межгалактические полеты уже не кажутся такими уж невозможными…

Иллюстрация: bigstockphoto | 3DSculptor

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В начале XX века, когда принципиальная выполнимость космических полетов была научно обоснована, появились первые соображения об их возможных траекториях. Прямолинейный полет от Земли к другой планете энергетически крайне невыгоден. В 1925 году немецкий инженер Вальтер Гоман (Walter Hohmann) показал, что минимальные затраты энергии на перелет между двумя круговыми орбитами обеспечиваются, когда траектория представляет собой «половинку» эллипса, касающегося исходной и конечной орбит. При этом двигатель космического аппарата должен выдать всего два импульса: в перигее и апогее (если речь идет об околоземном пространстве) переходного эллипса. Данная схема широко используется, например, при выведении на геостационарную орбиту. В межпланетных полетах задача несколько осложняется необходимостью учитывать притяжение Земли и планеты назначения соответственно на начальном и конечном участках траектории. Тем не менее полеты к Венере и Марсу выполняются по орбитам, близким к гомановским.


Пожалуй, первым примером более сложного космонавигационного приема могут служить биэллиптические траектории. Как доказал один из первых теоретиков космонавники Ари Абрамович Штернфельд, они оптимальны для перевода спутника между круговыми орбитами с разным наклонением. Изменение плоскости орбиты - одна из самых дорогих операций в космонавтике. Например, для поворота на 60 градусов аппарату надо добавить такую же скорость, с какой он уже движется по орбите. Однако можно поступить иначе: сначала выдать разгонный импульс, с помощью которого аппарат перейдет на сильно вытянутую орбиту с высоким апогеем. В ее верхней точке скорость будет совсем невелика, и направление движения меняется ценой относительно небольших затрат топлива. Одновременно можно скорректировать и высоту перигея, немного изменив скорость по величине. Наконец, в нижней точке вытянутого эллипса дается тормозной импульс, который переводит аппарат на новую круговую орбиту.
Этот маневр, называемый «межорбитальным перелетом с высоким апогеем», особенно актуален при запуске геостационарных спутников, которые первоначально выводятся на низкую орбиту с наклонением к экватору, равным широте космодрома, а потом переводятся на геостационарную орбиту (с нулевым наклонением). Использование биэллиптической траектории позволяет заметно сэкономить на топливе.

Гравитационные маневры


Многие межпланетные миссии при современных технических возможностях просто неосуществимы без обращения к экзотическим навигационным приемам. Дело в том, что скорость истечения рабочего тела из химических ракетных двигателей составляет около 3 км/с. При этом по формуле Циолковского каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической системы. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться к Марсу по гомановской траектории, надо набрать около 3,5 км/с, к Юпитеру - 6 км/с, к Плутону - 8-9 км/с. Получается, что полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. Вот почему 700-килограммовые «Вояджеры» (Voyager) запускались к Юпитеру 600-тонной ракетой «Титан» (Titan IIIE). А если ставится цель выйти на орбиту вокруг планеты, то возникает необходимость брать с собой запас топлива для торможения, и стартовая масса возрастает еще больше.

Но баллистики не сдаются - для экономии топлива они приспособили ту самую гравитацию, на преодоление которой при старте уходит значительная часть энергии. Гравитационные, или на профессиональном языке пертурбационные маневры практически не требуют расхода топлива. Все что нужно - это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящим для целей миссии положением. Подлетая к небесному телу, космический аппарат под действием его поля тяготения ускоряется или замедляется. Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве «гравитационной пращи», не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца. Таким способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный маневр используется для разгона, а при миссиях к внутренним планетам - напротив, для гашения гелиоцентрической скорости.

ВОЗМУЩЕНИЯ и КОРРЕКЦИИ

На картинках траектории межпланетных полетов выглядят очень просто: от Земли станция движется по дуге эллипса, дальний конец которой упирается в планету. Эллиптичность орбиты вокруг Солнца диктуется первым законом Кеплера. Рассчитать ее по силам даже школьнику, но если по ней запустить реальный космический аппарат, он промахнется мимо цели на многие тысячи километров. Дело в том, что на движение аппарата помимо Солнца влияет тяготение обращающихся вокруг него планет. Поэтому точно рассчитать, где окажется аппарат спустя месяцы, а то и годы полета, можно только сложным численным моделированием. Задаются начальное положение и скорость аппарата, определяется, как относительно него расположены планеты и какие силы действуют с их стороны. По ним рассчитывается, где окажется аппарат спустя небольшое время, скажем, спустя час, и как изменится его скорость. Затем цикл вычислений повторяется, и так шаг за шагом просчитывается вся траектория. Скорее всего, она попадет не совсем туда, куда нужно.
Тогда начальные условия немного меняют и повторяют расчет, пока не будет получен требуемый результат. Но как бы тщательно ни была рассчитана траектория, ракета не сможет идеально точно вывести на нее аппарат. Поэтому с самого начала рассчитывается целый пучок слегка расходящихся траекторий - изогнутый конус, внутри которого аппарат должен оказаться после старта. Например, при полете к Венере отклонение начальной скорости от расчетной всего на 1 м/с обернется у цели промахом в 10 000 километров - больше размера планеты. Поэтому уже во время полета параметры движения аппарата уточняются по телеметрическим данным (скорость, например, до миллиметров в секунду), а затем в расчетный момент включаются двигатели и орбиты корректируются.
Коррекции тоже не бесконечно точны, после каждой из них аппарат попадает в новый конус траекторий, но они не так сильно расходятся у точки назначения, поскольку часть пути уже пройдена. Если у цели аппарату предстоит гравитационный маневр, это повышает требования к точности навигации. Например, при пролете в 10 000 километрах от той же Венеры ошибка в навигации на 1000 километров приведет к тому, что после маневра станция собьется с курса примерно на градус. Исправить такое отклонение коррекционным двигателям, скорее всего, окажется не под силу. Еще жестче требования к точности навигации при использовании аэродинамического торможения в атмосфере. Ширина коридора составляет всего 10-20 километров. Пройди аппарат ниже - и он сгорит в атмосфере, а выше - ее сопротивления не хватит, чтобы погасить межпланетную скорость до орбитальной. К тому же расчет таких маневров зависит от состояния атмосферы, на которую влияет солнечная активность. Недостаточное понимание физики инопланетной атмосферы тоже может оказаться фатальным для космического аппарата.
На рис.:
1. Расходящийся конус траекторий - следствие погрешностей выведения космического аппарата.
2. Последствия ошибки при гравитационном маневре



Впервые идею гравитационного маневра высказали Фридрих Артурович Цандер и Юрий Васильевич Кондратюк еще в 1920-1930-х годах. Официально считается, что впервые подобный маневр выполнила в 1974 году американская станция «Маринер-10» (Mariner 10), которая, пролетев вблизи Венеры, направилась к Меркурию. Впрочем, первенство американцев оспаривают российские историки космонавтики, считающие первым гравитационным маневром облет Луны, который в 1959 году осуществила советская станция «Луна-3», впервые сфотографировавшая обратную сторону нашего естественного спутника.

Юпитер нам поможет


Многие межпланетные зонды использовали для разгона тяготение Юпитера. Первыми были аппараты «Пионер-10» и «Пионер-11» (Pioneer), а вслед за ними «Вояджер-1» и «Вояджер-2». В 1992 году Юпитер помог выйти из плоскости эклиптики «Улиссу» (Ulysses) - зонду, исследующему полярные области Солнца, вокруг которого он обращается по орбите, почти перпендикулярной земной. Другим способом вывести аппарат на такую орбиту при современном уровне развития космической техники просто невозможно. Выполнил пертурбационный маневр у Юпитера и зонд «Новые горизонты» (New Horizons), запущенный Соединенными Штатами к Плутону 19 января 2006 года. Увеличив скорость на 4 км/с и на 2,5 градуса отклонившись от плоскости эклиптики, он сможет прибыть к цели в 2015 году, прежде чем на Плутоне (который в этом столетии удаляется от Солнца) станет замерзать атмосфера, снижая тем самым ценность будущих исследований.
Разумеется, для выполнения гравитационных маневров дата старта должна быть выдержана весьма точно. Баллистики оперируют понятием «окно запуска» - это интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна. Ближе к краям «окна» эффект становится меньше, а потребности в топливе - больше. Если же выйти за его границы, то носитель просто не сможет вывести аппарат на нужную орбиту, что приведет к срыву полета или недопустимому возрастанию его длительности. Например, запуск «Новых горизонтов» неоднократно переносился по погодным и техническим причинам. Задержись старт еще на несколько дней, и зонд отправился бы в полет уже без расчета на «гравитационную помощь» Юпитера и с меньшими шансами на успех. Выполнять маневры у планет-гигантов удобнее всего. Благодаря их большой массе поворачивать возле них можно по широкой плавной дуге и требования к точности навигации остаются довольно мягкими. Однако нередко в качестве «пращи» используют Венеру, Землю, Марс и даже Луну. Тут уже ошибаться нельзя, в противном случае аппарат уйдет от планеты совсем не в том направлении, как было запланировано.

Зонд ISEE-3/ICE четыре года (1978-1982) изучал Солнце с орбиты вокруг точки Лагранжа L1, а затем путем сложных гравитационных маневров у Земли и Луны он был направлен на встречу с кометами Джакобини - Циннера (1985) и Галлея (1986). В 2012-м зонд вернется к Земле. Рис. NASA

Окном запуска называют интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна.

Гомановские эллипсы, касающиеся орбиты Земли и планеты назначения, - самые экономичные межпланетные траектории, если не прибегать к гравитационным маневрам. Полет к Марсу по гомановской орбите занимает около 240-280 суток, к Венере - около 150 суток.



Космический гравсерфинг


Наиболее сложны - но тем и интересны! - траектории с пертурбационными маневрами не у одного, а у нескольких небесных тел. К примеру, станция «Галилео» (Galileo), чтобы добраться до Юпитера, осуществила гравитационный маневр в поле тяготения Венеры, а потом еще два возле Земли. Такие полеты возможны не всегда, а лишь при определенном расположении планет. Самый знаменитый подобный «большой тур» совершил «Вояджер-2», который последовательно пролетел вблизи Юпитера, Сатурна, Урана и Нептуна. Его близнец «Вояджер-1» тоже мог бы пройти подобным маршрутом, однако ученые предпочли поближе рассмотреть загадочный спутник Сатурна Титан, и его тяготение необратимо отклонило траекторию станции от направления на Уран. Это было трудное, но верное решение. Именно данные «Вояджера-2» позволили спустя 24 года осуществить посадку на Титан зонда «Гюйгенс» (Huygens).
В наши дни еще более сложный полет выполняет станция «Мессенджер» (MESSENGER). Ее основная задача - выход на орбиту вокруг Меркурия для детального изучения его характеристик. Миссия, рассчитанная на семь лет пути, в январе 2008 года вышла на заключительный этап. Аппарат уже выполнил четыре гравитационных маневра: один около Земли, два возле Венеры и один у самого Меркурия, а между ними производились маневры двигателями, чтобы каждый раз правильно входить в гравитационную «воронку» планеты. «Мессенджеру» предстоит совершить еще пять маневров (два гравитационных и три - двигателями), прежде чем он станет спутником ближайшей к Солнцу планеты. За это время он «намотает» вокруг Солнца 8 миллиардов километров - больше, чем до Плутона! Однако, не будь траектория столь сложной, при современном состоянии ракетно-космической техники этот полет вообще не мог бы состояться.

ЛЕСТНИЦА ЛАГРАНЖА

Несмотря на коррекции и гравитационные маневры, орбиты большинства межпланетных станций все же близки к классическим дугам эллипсов и гипербол. Но в последнее время астронавигаторы все чаще используют куда более изощренные траектории, пролегающие в тех областях пространства, где приходится в равной мере учитывать притяжение сразу двух небесных тел.
Рассмотрим, например, орбиту Земли вокруг Солнца. Она почти круговая с радиусом 150 миллионов километров и периодом обращения, равным году. Соотношение радиуса и периода определяется силой солнечного притяжения, заставляющей Землю двигаться по искривленной траектории. На большем расстоянии притяжение Солнца окажется слабее, а соответствующая орбитальная скорость ниже. Космический аппарат на такой орбите отстает от Земли (а на орбите меньшего радиуса обгоняет ее). Математически это выражается третьим законом Кеплера. Однако из этого правила есть исключение. Допустим, мы запустили станцию так, чтобы она пришла в некую точку, расположенную на продолжении земной тени, причем на строго определенном расстоянии от Земли (примерно полтора миллиона километров). Тогда притяжение нашей планеты, добавленное к солнечному, окажется как раз таким, что период обращения по расширенной орбите будет в точности равен году. Получится, что станция как бы все время прячется от Солнца позади Земли. Аналогичная траектория есть и внутри земной орбиты, где притяжение планеты, наоборот, ослабляет солнечное ровно настолько, чтобы на более короткой орбите период обращения был равен году. На таких орбитах станции будут обращаться вокруг Солнца, оставаясь неподвижными относительно Земли, - в направлении к Солнцу и от него. Это так называемые точки Лагранжа L1 и L2, где космический аппарат может неподвижно висеть, не расходуя топлива. Этим уже пользуются: в L1 работает солнечная обсерватория SOHO, а в L2 - астрофизический зонд WMAP. Туда же планируется вывести 6-метровый телескоп имени Джеймса Вебба, который строится на смену стареющему «Хабблу».
Но полеты в точках Лагранжа не лишены трудностей. Дело в том, что равновесие в них неустойчиво. Стоит аппарату немного отклониться из-за возмущений со стороны других планет или погрешностей навигации, как он начинает описывать вокруг точки Лагранжа медленно расходящиеся петли. Если вовремя не скорректировать орбиту, аппарат может быть выброшен в космос или даже упасть на Землю. Рассчитать движение по такой траектории очень трудно: она очень сильно «крутит хвостом» - при малейшей ошибке в начальных условиях может повернуться в противоположном направлении.
И все же NASA уже удалось воспользоваться такой сложной орбитой для миссии по сбору образцов солнечного ветра. Аппарат «Генезис» (Genesis) был запущен по тончайшим образом выверенной траектории, которая после нескольких витков вокруг точки L1 вернула его к Земле, причем так, что капсула с образцами по касательной вошла в атмосферу и совершила посадку (к сожалению, жесткую из-за сбоя в парашютной системе). А у навигаторов тем временем зреют новые планы. Среди раскручивающихся траекторий ухода от точки L1 есть такие, которые на время приводят аппарат на орбиту вокруг L2 (и наоборот). Причем для этого не требуется серьезных затрат топлива. У Земли пользы от этого немного. Иное дело - система Юпитера, где у каждого из четырех его больших спутников - Ио, Европы, Ганимеда и Каллисто - есть по паре точек Лагранжа. Двигаясь вокруг планеты, внутренние спутники обгоняют внешние, и если правильно подгадать, то ценой совсем небольших затрат топлива аппарат может перепрыгнуть с неустойчивой орбиты вокруг точки L2, скажем, спутника Ио на такую же орбиту вокруг точки L1 Европы. Покрутившись там и проведя наблюдения, можно подняться еще на одну ступеньку «лестницы» - к точке L2 Европы, а оттуда в нужный момент прыгнуть к L1 Ганимеда, а там и до Каллисто рукой подать. Спускаться по этой «лестнице Лагранжа» тоже не возбраняется.
Именно такой план полета предлагается для большой исследовательской станции JIMO, которую NASA готовит для изучения галилеевых спутников Юпитера. До сих пор спутники Юпитера исследовались только с пролетных траекторий. «Лестница Лагранжа» позволит станции подолгу зависать над спутником - изучать его поверхность и отслеживать происходящие на ней процессы.



С малой тягой к малым телам


Но гравитационные маневры - не единственный способ сэкономить топливо. Еще в 1930-х годах один из пионеров отечественного ракетного двигателестроения Валентин Петрович Глушко предложил использовать электроракетные двигатели (ЭРД). По сравнению с традиционными жидкостными ракетными двигателями (ЖРД) скорость истечения рабочего тела у них на порядок выше, а значит, топлива требуется в сотни раз меньше. К сожалению, тяга ЭРД исчисляется величинами порядка нескольких граммов-силы, так что для вывода аппаратов на орбиту они не годятся. Это «двигатели открытого космоса», предназначенные для медленного, но непрерывного ускорения, длящегося месяцы, а при межпланетных полетах и годы. «Миссии с малой тягой» стали популярны лишь тогда, когда электроника, сделав гигантский скачок, позволила увеличить срок службы космических аппаратов с нескольких месяцев до нескольких лет, а то и десятилетий.


Трасса полета с малой тягой совсем не похожа на классический эллипс, она представляет собой медленно разворачивающуюся спираль Архимеда. Переход с низкой околоземной орбиты на геостационарную по такой траектории затягивается на полгода. Это поистине пытка для владельца спутника, продающего услуги космической связи: каждый день ожидания обходится в десятки тысяч долларов. Приходится учитывать и такое неприятное обстоятельство, как многократный пролет через радиационные пояса Земли. Тонкая электроника очень не любит космических излучений. Но зато спутник, оснащенный ЭРД, можно запустить на геостационарную орбиту ракетой «Союз» (300 тонн), а для аппарата с обычным ЖРД уже нужен могучий «Протон» (700 тонн). Разница в стоимости запуска - в два-три раза. Вот и ломает голову заказчик космического аппарата: какой вариант выбрать? Обычно все же останавливаются на том, что быстрее: современные спутники связи начинают «отбивать» затраченные на их запуск деньги уже через пару недель после выведения на целевую орбиту. Так что в околоземном пространстве двигатели малой тяги применяют в основном для небольших коррекций орбиты.
Другое дело - полеты, скажем, к астероидам. ЭРД позволят относительно легко перекидывать межпланетную станцию с одного объекта к другому, причем не просто пролетать мимо, а подолгу задерживаться у каждого. По причине своей ничтожной (по сравнению с планетами) массы астероиды обладают мизерной гравитацией. Их облет мало похож на обычное орбитальное движение вокруг больших планет. Орбитальные скорости здесь измеряются сантиметрами в секунду, а периоды - многими сутками. Чтобы облететь астероид быстрее, приходится почти постоянно «работать двигателями». Стоит их выключить, и аппарат просто улетит от планетоида. Но зато практически полное отсутствие гравитации позволяет садиться на поверхность астероида и взлетать с него при минимальных затратах топлива.
По большому счету слово «посадка» здесь можно употреблять лишь условно: причаливание межпланетного зонда к астероиду больше напоминает стыковку двух космических кораблей, нежели классическую посадку на поверхность планеты. Этот фокус проделывали японцы со своим зондом «Хаябуса», который дважды опускался на поверхность астероида Итокава и поднимался с нее. Кстати, этот же полет показал, насколько непросто управлять аппаратом вблизи поверхности астероида. Обмен сигналами с аппаратом занимает десятки минут, так что отдавать ему команды в реальном времени невозможно, несмотря на небольшие скорости. Поэтому отработка автономной навигации вблизи неровной поверхности астероида была одной из основных задач «Хаябусы».
Стартовавший в сентябре 2007 года к астероидам Церере и Весте американский зонд «Заря» (Dawn) оснащен ионными двигателями с тягой меньше одной десятой Ньютона (вес 10-гранного груза). За сутки работы они ускоряют аппарат массой около тонны на 25 км/ч. Это не так мало, как может показаться: за год подобными темпами можно набрать 2,5 км/с. Полного же запаса топлива на борту (425 килограммов) хватит для изменения скорости аппарата на 10 км/с - никаким межпланетным аппаратам с химическими двигателями подобное недоступно.

Планетарные двигатели


Попробуем пофантазировать и представим, что наконец-то решено отправить экипаж, состоящий из людей, скажем, в систему Сатурна. Можно выбрать быстрый перелет с большой тягой: собрать межпланетный корабль на околоземной орбите, выдать при помощи ЖРД мощный разгонный импульс и по гиперболе отправиться в путешествие. Лететь все равно придется долго - несколько лет. Масса топлива нужна огромная. А значит, для снаряжения гигантского корабля потребуется не один десяток сверхтяжелых ракет. Запасы кислорода, воды, пищи и всего, что нужно в межпланетном полете, теряются на фоне огромной массы топлива, необходимого не только для разгона у Земли, но и для торможения у цели путешествия, и для возвращения к родной планете…


А что если попробовать малую тягу? Безумное количество топлива существенно сократится, а срок путешествия, как ни странно, может остаться прежним! Ведь двигатели корабля будут работать всю дорогу - полпути на разгон, а полпути - на торможение. Правда, тягу электрореактивных двигателей придется увеличить в сотни раз по сравнению с теми, что стоят на зонде «Заря». Но во-первых, такие разработки уже ведутся, а во-вторых, двигателей может быть много.
Для питания ЭРД понадобится несколько мегаватт энергии. Вблизи Земли ее можно было бы получать даром - от огромных солнечных батарей площадью тысячи, если не десятки тысяч квадратных метров. Но с удалением от Солнца их эффективность быстро падает: у Марса - на 60%, у Юпитера - в 30 раз. Так что для полетов к планетам-гигантам придется использовать ядерный реактор. И еще, скорее всего, ЖРД все-таки понадобятся для того, чтобы быстрее пройти опасные радиационные пояса вблизи Земли. Видимо, именно комбинированные двигательные установки будут применяться в межпланетных пилотируемых миссиях будущего.

Не только гравитация


Дальний космос таит в себе немало загадок. Казалось бы, что может быть точнее баллистических расчетов, в основе которых лежат законы небесной механики? Не тут-то было! На космический зонд действует множество сил, которые трудно учесть заранее. Давление солнечного излучения и солнечный ветер, магнитные поля планет и истечение газа из самого аппарата - все это сказывается на скорости его движения. Даже тепловое излучение зонда и радиосигнал, посылаемый на Землю узконаправленной антенной, вызывают отдачу, которую приходится учитывать при точной навигации. А то что происходило с уже упоминавшимися «Пионерами», вообще не получило пока должного объяснения. Работающий в NASA российский астрофизик Вячеслав Турышев обнаружил около 10 лет назад, что зонды испытывают очень небольшое аномальное торможение. За 20 лет полета аномалия «Пионеров» привела к тому, что, подлетая к границам Солнечной системы, космические аппараты отклонились от расчетного положения на 400 тысяч километров! Какие только гипотезы не выдвигались для объяснения аномалии. От уже упомянутых магнитных полей и испарения остатков топлива из топливных магистралей до наличия на границах Солнечной системы массивных невидимых объектов. Некоторые физики считают аномалию указанием на неточность современной теории гравитации, другие видят в ней проявление космологических факторов вроде темной материи и темной энергии. Исчерпывающего объяснения пока нет, а группа Турышева продолжает обрабатывать данные о полете «Пионеров». Как бы то ни было, при проектировании новых траекторий межпланетных полетов придется учитывать возможность подобных неожиданных явлений.

В общем, работа космического баллистика балансирует на грани искусства и точных наук. Ему всегда приходится решать задачу со многими неизвестными, усугубленную стремлением заказчика сделать все «быстрее и дешевле», не выходя за рамки физических законов. Так что, несомненно, мы еще станем свидетелями рождения многих новых нетривиальных космических траекторий.

Если ракета пролетит рядом с планетой, её скорость изменится. Либо уменьшится, либо возрастёт. Это зависит от того, с какой стороны от планеты она пролетит.

Когда американские космические аппараты «Вояджеры» совершали свой знаменитый Гранд тур по внешней Солнечной системе, они выполнили несколько так называемых гравитационных манёвров вблизи планет-гигантов.
Больше всего повезло «Вояджеру-2», который пролетел мимо всех четырёх больших планет. График его скорости см. на рисунке:

Из графика видно, что после каждого сближения с планетой (кроме Нептуна), скорость космического аппарата возрастала на несколько километров в секунду.

На первый взгляд это может показаться странным: объект влетает в гравитационное поле и ускоряется, затем вылетает из поля и тормозится. Скорость прилёта должна равняться скорости вылета. Откуда появляется дополнительная энергия?
Дополнительная энергия появляется потому, что есть третье тело – Солнце. При пролёте рядом с планетой космический аппарат обменивается с ней импульсом и энергией. Если при таком обмене гравитационная энергия планеты в поле Солнца уменьшается, то кинетическая энергия космического аппарата (КА) увеличивается, и наоборот.

Как должен пролететь мимо планеты КА, чтобы его скорость возросла? Ответить на этот вопрос нетрудно. Пусть КА пересечет орбиту планеты прямо перед ней. В этом случае, получив дополнительный импульс в направлении на планету, он передаст ей дополнительный импульс в противоположном направлении, то есть в направлении её движения. В результате планета перейдёт на чуть более высокую орбиту, и её энергия возрастёт. Энергия КА при этом, соответственно, уменьшится. Если же КА пересечёт орбиту позади планеты, то он, чуть-чуть притормозив её движение, переведёт планету на более низкую орбиту. Скорость КА при этом возрастёт.

Конечно, масса КА несоизмерима с массой планеты. Поэтому изменение орбитальных параметров планеты при гравитационном манёвре бесконечно малая величина, не поддающаяся измерению. Тем не менее, энергия планеты изменяется, и мы можем убедиться в этом, проведя гравитационный манёвр и увидев, что скорость КА изменяется. Вот, к примеру, как пролетел «Вояджер-2» вблизи Юпитера 9 июля 1979 года (см. рис.). При подлёте к Юпитеру скорость космического аппарата составляла 10 км/сек. В момент максимального сближения она увеличилась до 28 км/сек. А после того, как «Вояджер-2» вылетел из гравитационного поля газового гиганта, уменьшилась до 20 км/сек. Таким образом, в результате гравитационного манёвра скорость космического аппарата возросла в два раза и стал гиперболической. То есть превысила скорость, необходимую для вылета из Солнечной системы. На орбите Юпитера скорость вылета из Солнечной системы около 18 км/сек.

Из этого примера видно, что Юпитер (или другая планета) может разогнать какое-нибудь тело до гиперболической скорости. А значит, он может «выбросить» это тело из Солнечной системы. Может быть, современные космогонисты правы? Может быть, действительно планеты-гиганты выбросили ледяные глыбы на далёкие окраины Солнечной системы и, таким образом, сформировали кометное облако Оорта.
Прежде чем ответить на этот вопрос, посмотрим, на какие гравитационные манёвры способны планеты?

2. Принципы гравитационного манёвра

Впервые я познакомился с гравитационным манёвром в 9-м классе на краевой олимпиаде по физике. Задача была такая. С Земли стартует ракета со скоростью V (достаточна, чтобы вылететь из поля притяжения). У ракеты есть двигатель с тягой F , который может работать время t . В какой момент времени нужно включить двигатель, чтобы конечная скорость ракеты была максимальная? Сопротивлением воздуха пренебречь.

Сначала мне показалось, что не важно, когда включить двигатель. Ведь вследствие закона сохранения энергии, конечная скорость ракеты должна быть одинаковой в любом случае. Оставалось посчитать конечную скорость ракеты в двух случаях: 1. двигатель включаем в начале, 2. двигатель включаем после вылета из поля притяжения Земли. После чего сравнить результаты и убедиться, что конечная скорость ракеты в обоих случаях одинакова. Но потом я вспомнил, что мощность равна: сила тяги умножить на скорость. Поэтому мощность ракетного двигателя будет максимальна, если включить двигатель сразу на старте, когда скорость ракеты максимальна. Итак, правильный ответ: двигатель включаем сразу же, тогда конечная скорость ракеты будет максимальной.

И хотя я задачу решил правильно, но проблема осталась. Конечная скорость, а, значит, и энергия ракеты ЗАВИСИТ от того, в какой момент времени включить двигатель. Вроде бы явное нарушение закона сохранения энергии. Или нет? В чём тут дело? Энергия должна сохраняться! На все эти вопросы я пытался ответить уже после олимпиады.

Пусть у нас есть ракета массы М с двигателем, который создаёт тягу силой F . Поместим эту ракету в пустое пространство (вдали от звёзд и планет) и включим двигатель. С каким ускорением будет двигаться ракета? Ответ мы знаем из Второго закона Ньютона: ускорение a равно:

a = F/M

Теперь перейдём в другую инерциальную систему отсчёта, в которой ракета движется с большой скоростью, скажем, 100 км/сек. Чему равно ускорение ракеты в этой системе отсчёта?
Ускорение НЕ ЗАВИСИТ от выбора инерциальной системы отсчёта, поэтому оно будет ТЕМ ЖЕ САМЫМ:

a = F/M

Масса ракеты также не изменяется (100 км/сек это ещё не релятивистский случай), поэтому и сила тяги F будет ТОЙ ЖЕ САМОЙ. И, следовательно, мощность ракеты ЗАВИСИТ от её скорости. Ведь мощность равна силе, умноженной на скорость. Получается, что если ракета движется со скоростью 100 км/сек, то мощность её двигателя в 100 раз мощнее, чем ТОЧНО ТАКОГО ЖЕ двигателя, находящегося на ракете, движущейся со скоростью 1 км/сек.

На первый взгляд это может показаться странным и даже парадоксальным. Откуда берётся огромная дополнительная мощность? Энергия ведь должна сохраняться!

Давайте разберёмся в этом вопросе.


Ракета всегда движется на реактивной тяге: она выбрасывает в космос различные газы с высокой скоростью. Для определённости предположим, что скорость выброса газов 10 км/сек. Если ракета движется со скоростью 1 км/сек, то её двигатель разгоняет в основном не ракету, а ракетное топливо. Поэтому мощность двигателя по разгону ракеты не высока. А вот если ракета движется со скоростью 10 км/сек, то выброшенное топливо будет ПОКОИТЬСЯ относительно внешнего наблюдателя, то есть, вся мощность двигателя будет тратится на разгон ракеты. А если ракета движется со скоростью 100 км/сек? В этом случае выброшенное топливо будет двигаться со скоростью 90 км/сек. То есть, скорость топлива УМЕНЬШИТСЯ от 100 до 90 км/сек. И ВСЯ разность кинетической энергии топлива в силу закона сохранения энергии будет передана ракете. Поэтому мощность ракетного двигателя при таких скоростях значительно возрастёт.

Проще говоря, у быстро двигающейся ракеты её топливо обладает огромной кинетической энергией. И из этой энергии черпается дополнительная мощность для разгона ракеты. Теперь осталось сообразить, как это свойство ракеты можно использовать на практике.

3. Практическое применение

Предположим, в недалёком будущем вы собрались лететь на ракете в систему Сатурна на Титан:

чтобы исследовать анаэробные формы жизни.

Долетели до орбиты Юпитера и выяснилось, что скорость ракеты упала почти до нуля. Не рассчитали как следует траекторию полёта или топливо оказалось контрафактным. А может, метеорит попал в топливный отсек, и почти всё топливо было потеряно. Что делать?

У ракеты есть двигатель и остался небольшой запас горючего. Но максимум, на что способен двигатель – увеличить скорость ракеты на 1 км/сек. Этого явно недостаточно, чтобы долететь до Сатурна. И вот пилот предлагает такой вариант.

«Входим в поле притяжения Юпитера и падаем на него. В результате Юпитер разгоняет ракету до огромной скорости – примерно 60 км/сек. Когда ракета разгонится до этой скорости, включаем двигатель. Мощность двигателя при такой скорости возрастёт многократно. Затем вылетаем из поля притяжения Юпитера. В результате такого гравитационного манёвра скорость ракеты возрастает не на 1 км/сек, а значительно больше. И мы сможем долететь до Сатурна».

Но кто-то возражает.

«Да, мощность ракеты вблизи Юпитера возрастёт. Ракета получит дополнительную энергию. Но, вылетая из поля притяжения Юпитера, мы всю эту дополнительную энергию потеряем. Энергия должна остаться в потенциальной яме Юпитера, иначе будет что-то вроде вечного двигателя, а это невозможно. Поэтому пользы от гравитационного манёвра не будет. Только зря время потратим».

Что вы об этом думаете?

Итак, ракета находится недалеко от Юпитера и почти неподвижна относительно него. У ракеты есть двигатель с топливом, которого хватит, чтобы увеличить скорость ракеты только на 1 км/сек. Чтобы повысить КПД двигателя, предлагается совершить гравитационный манёвр: «уронить» ракету на Юпитер. Она будет двигаться в его поле притяжения по параболе (см. фото). И в самой низкой точке траектории (помечена красным крестиком на фото) включить двигатель. Скорость ракеты вблизи Юпитера составит 60 км/сек. После того, как двигатель её дополнительно разгонит, скорость ракеты возрастёт до 61 км/сек. Какая скорость будет у ракеты, когда она вылетит из поля притяжения Юпитера?

Эта задача по силам школьнику старших классов, если, конечно, он хорошо знает физику. Сначала нужно написать формулу для суммы потенциальной и кинетической энергий. Затем вспомнить формулу для потенциальной энергии в поле тяготения шара. Посмотреть в справочнике, чему равна гравитационная постоянная, а также масса Юпитера и его радиус. Используя закон сохранения энергии и произведя алгебраические преобразования, получить общую конечную формулу. И наконец, подставив в формулу все числа и проделав вычисления, получить ответ. Я понимаю, что никому (почти никому) не охота вникать в какие-то формулы, поэтому постараюсь, не напрягая вас никакими уравнениями, объяснить решение этой задачи «на пальцах». Надеюсь, получится!

Если ракета неподвижна, её кинетическая энергия равна нулю. А если ракета движется со скоростью 1 км/сек, то будем считать, что её энергия 1 единица. Соответственно, если ракета движется со скоростью 2 км/сек, то её энергия 4 единицы, если 10 км/сек, то 100 единиц и т.д. Это понятно. Половину задачи мы уже решили.

В точке, помеченной крестиком:

скорость ракеты 60 км/сек, а энергия 3600 единиц. 3600 единиц достаточно, чтобы вылететь из поля притяжения Юпитера. После разгона ракеты её скорость стала 61 км/сек, а энергия, соответственно, 61 в квадрате (берём калькулятор) 3721 единицы. Когда ракета вылетает из поля притяжения Юпитера, она тратит только 3600 единиц. Остаётся 121 единица. Это соответствует скорости (берём корень квадратный) 11 км/сек. Задача решена. Это не приближённый, а ТОЧНЫЙ ответ.

Мы видим, что гравитационный манёвр можно использовать для получения дополнительной энергии. Вместо того, чтобы разогнать ракету до 1 км/сек, её можно разогнать до 11 км/сек (энергия в 121 раз больше, КПД – 12 тысяч процентов!), если рядом будет какое-нибудь массивное тело вроде Юпитера.

За счёт чего мы получили ОГРОМНЫЙ энергетический выигрыш? За счёт того, что оставили израсходованное топливо не в пустом пространстве вблизи ракеты, а в глубокой потенциальной яме, созданной Юпитером. Израсходованное топливо получило большую потенциальную энергию со знаком МИНУС. Поэтому ракета получила большую кинетическую энергию со знаком ПЛЮС.

4. Поворот вектора скорости вблизи планеты

Предположим, мы пролетаем на ракете вблизи Юпитера и хотим увеличить её скорость. Но топлива у нас НЕТ. Скажем так, у нас есть немного топлива, чтобы подкорректировать свой курс. Но его явно недостаточно, чтобы заметно разогнать ракету. Можем ли мы заметно увеличить скорость ракеты, используя гравитационный манёвр?

В самом общем виде эта задача выглядит так. Мы влетаем в поле тяготения Юпитера с какой-то скоростью. Затем вылетаем из поля. Изменится ли наша скорость? И как сильно она может измениться? Давайте решим эту задачу.

С точки зрения наблюдателя, который находится на Юпитере (а точнее, неподвижен относительно его центра масс), наш манёвр выглядит так. Сначала ракета находится на большом расстоянии от Юпитера и движется к нему со скоростью V . Затем, приближаясь к Юпитеру, она разгоняется. Траектория ракеты при этом искривляется и, как известно, в самом общем виде представляет собой гиперболу. Максимальная скорость ракеты будет при минимальном сближении. Здесь главное – не врезаться в Юпитер, а пролететь рядом с ним. После минимального сближения ракета начнёт удаляться от Юпитера, а её скорость будет уменьшаться. Наконец, ракета вылетит из поля притяжения Юпитера. Какая у неё будет скорость? Точно такая же, как и была при влёте. Ракета влетела в гравитационное поле Юпитера со скоростью V и вылетела из него с точно такой же скоростью V . Ничего не изменилось? Нет изменилось. Изменилось НАПРАВЛЕНИЕ скорости. Это важно. Благодаря этому мы можем совершить гравитационный манёвр.

Действительно, для нас ведь важна не скорость ракеты относительно Юпитера, а её скорость относительно Солнца. Это так называемая гелиоцентрическая скорость. С такой скоростью ракета движется по Солнечной системе. Юпитер тоже движется по Солнечной системе. Вектор гелиоцентрической скорости ракеты можно разложить на сумму двух векторов: орбитальная скорость Юпитера (примерно 13 км/сек) и скорость ракеты ОТНОСИТЕЛЬНО Юпитера. Здесь нет ничего сложного! Это обычное правило треугольника для сложения векторов, которое изучают в 7-м классе. И этого правила ДОСТАТОЧНО, чтобы понять суть гравитационного манёвра.

У нас есть четыре скорости. V 1 – это скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. U 1 – это скорость ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. U 2 – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. По величине U 1 и U 2 РАВНЫ, но по направлению они РАЗНЫЕ. V 2 – это скорость ракеты относительно Солнца ПОСЛЕ гравитационного манёвра. Чтобы увидеть, как все эти четыре скорости связаны между собой, посмотрим на рисунок:

Зелёная стрелка АО – это скорость движения Юпитера по своей орбите. Красная стрелка АВ – это V 1: скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОВ – это скорость нашей ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОС – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. Эта скорость ДОЛЖНА лежать где-то на жёлтой окружности радиуса ОВ. Потому что в своей системе координат Юпитер НЕ МОЖЕТ изменить величину скорости ракеты, а может только повернуть её на некоторый угол (альфа). И наконец, АС – это то, что нам нужно: скорость ракеты V 2 ПОСЛЕ гравитационного манёвра.

Посмотрите, как всё просто. Скорость ракеты ПОСЛЕ гравитационного манёвра АС равна скорости ракеты ДО гравитационного манёвра АВ плюс вектор ВС. А вектор ВС это ИЗМЕНЕНИЕ скорости ракеты в системе отсчёта Юпитера. Потому что ОС – ОВ = ОС + ВО = ВО + ОС = ВС. Чем сильнее повернётся вектор скорости ракеты относительно Юпитера, тем эффективнее будет гравитационный манёвр.

Итак, ракета БЕЗ горючего влетает в поле притяжения Юпитера (или другой планеты). Величина её скорости ДО и ПОСЛЕ манёвра относительно Юпитера НЕ ИЗМЕНЯЕТСЯ. Но из-за поворота вектора скорости относительно Юпитера, скорость ракеты относительно Юпитера всё-таки изменяется. И вектор этого изменения просто прибавляется к вектору скорости ракеты ДО манёвра. Надеюсь, всё понятно объяснил.

Космический аппарат «Вояджер» - самый далекий от Земли из рукотворных объектов. Он уже 40 лет несется по космосу, давно выполнив свою основную цель, - исследование Юпитера и Сатурна. Фотографии дальних планет Солнечной системы, знаменитая Pale blue dot и «Семейная фотография», золотой диск с информацией о Земле - все это славные страницы истории «Вояджера» и мировой космонавтики. Но сегодня мы не будем петь гимны знаменитому аппарату, а разберем одну из технологий, без которой сорокалетний полет просто не состоялся бы. Встречайте: его величество гравитационный маневр.

Гравитационное взаимодействие, наименее изученное из имеющихся четырех, задает тон всей космонавтике. Одна из главных статей расхода при запуске космического аппарата - затраты на те силы, которые нужны, чтобы преодолеть гравитационное поле Земли. И каждый грамм полезной нагрузки на космическом корабле - это лишнее топливо в ракете. Получается парадокс: чтобы больше брать, нужно больше топлива, которое тоже весит. То есть чтобы увеличить массу, нужно увеличить массу. Конечно, это весьма обобщенная картина. В реальности точные расчеты позволяют брать необходимую нагрузку и по мере необходимости увеличивать ее. Но гравитация, как говорил Шелдон Купер, все еще бессердечная, кхм, стерва.

Как это часто бывает, в любом явлении кроется двойственная природа. Так же в отношениях гравитации и космонавтики. Человеку удалось применить гравитационную тягу планет на пользу своим космическим полетам, и за счет этого «Вояджер» бороздит межзвездное пространство уже сорок лет, не затрачивая топлива.

Неизвестно, кому впервые пришла в голову идея гравитационного маневра. Если порассуждать, то можно дойти до первых астрономов Египта и Вавилона, которые звездными южными ночами наблюдали за тем, как кометы изменяют свою траекторию и скорость, проходя мимо планет.

Первая оформленная идея гравитационного маневра прозвучала из уст Фридриха Артуровича Цандера и Юрия Васильевича Кондратюка в 1920-30-х годах, в эпоху теоретической космонавтики. Юрий Васильевич Кондратюк (настоящее имя - Александр Иванович Шаргей) - выдающийся советский инженер и ученый, который, независимо от Циолковского, сам создал схемы ракеты на кислородно-водородном топливе, предложил использовать атмосферу планеты для торможения, разработал проект спускаемого аппарата для посадки на небесное тело, который впоследствии использовало NASA для лунной миссии. Фридрих Цандер - один из тех людей, которые стояли у истоков отечественной космонавтики. Он состоял, а в некоторые годы и председательствовал, в ГИРДе - Группе Изучения Ракетного Движения, сообществе инженеров-энтузиастов, которые строили первые прототипы ракет на жидком топливе. За полное отсутствие какого-либо материального интереса, ГИРД иногда в шутку расшифровывали как Группа Инженеров, Работающих Даром.

Юрий Васильевич Кондратюк
Источник: wikimedia.org

Между высказанными предложениями Кондратюка с Цандером и практической реализацией гравитационного маневра прошло порядка пятидесяти лет. Точно установить первый аппарат, ускорившийся от гравитации, не представляется возможным - американцы утверждают, что это «Маринер-10» в 1974 году. Мы говорим, что это была «Луна-3» в году 1959. Это вопрос истории, но что же из себя представляет гравитационный маневр?

Суть гравитационного маневра

Представьте себе обычную карусель во дворе обычного дома. Затем мысленно раскрутите её до скорости икс километров в час. Потом возьмите в руку резиновый мячик и киньте в раскрученную карусель со скоростью игрек километров в час. Только берегите голову! И что же мы получим в итоге?

Тут важно понимать, что суммарная скорость будет определяться не абсолютно, а относительно точки наблюдения. С карусели, да и с вашей позиции, мячик отскочит от карусели со скоростью х+у - суммарной для карусели и мячика. Таким образом, карусель передает часть своей кинетической энергии (а точнее говоря, импульса) мячику, тем самым ускоряя его. Причем количество убывшей у карусели энергии равно количеству энергии, переданной мячику. Но за счет того, что карусель большая и чугунная, а мячик маленький и каучуковый, мяч летит с большой скоростью в сторону, а карусель лишь немного замедляет ход.

Теперь перенесем ситуацию на космос. Представьте себе обычный Юпитер в обычной Солнечной системе. Затем мысленно раскрутите его… хотя, стоп, этого делать не надо. Просто представьте Юпитер. Мимо него летит космический аппарат и под действием гиганта изменяет свою траекторию и скорость. Это изменение можно описать в виде гиперболы - скорость сначала возрастает по мере приближения, а затем падает по мере отдаления. С точки зрения потенциального жителя Юпитера, наш космический корабль вернулся к исходной скорости, просто изменив направление. Но мы-то знаем, что планеты вращаются вокруг Солнца, да еще с большой скоростью. Юпитер, например, со скоростью 13 км/с. И когда аппарат пролетает мимо, Юпитер ловит его своей гравитацией и увлекает за собой, выкидывая вперед с большей скоростью, чем была до! Это если пролететь сзади планеты относительно направления ее движения вокруг Солнца. Если пролететь перед ней, то скорость, соответственно, упадет.

Гравитационный маневр. Источник: wikimedia.org

Такая схема напоминает собой метание камней из пращи. Поэтому еще одно название маневра - «гравитационная праща». Чем больше скорость планеты и ее масса, тем сильнее можно разогнаться или притормозить об ее гравитационное поле. Есть еще небольшая хитрость - так называемый эффект Орбета.

Названый в честь Германа Орбета, этот эффект в самых общих чертах можно описать так: реактивный двигатель, движущийся на высокой скорости, совершает больше полезной работы, чем такой же, движущийся медленно. То есть двигатель космического аппарата будет максимально эффективен в самой «низкой» точке траектории, где гравитация будет тянуть его сильнее всего. Включенный в этот момент, он получит от сожженного топлива намного больший импульс, чем получил бы вдали от гравитирующих тел.

Сложив все это в единую картину, мы можем получить очень неплохое ускорение. Юпитер, например, при собственной скорости в 13 км/с может в теории разогнать корабль на 42,7 км/с, Сатурн – на 25 км/с, планеты поменьше, Земля и Венера, - на 7-8 км/с. Тут сразу же включается воображение: а что будет, если запустить теоретический несгораемый аппарат к Солнцу и ускориться от него? Действительно, это возможно, так как Солнце вращается вокруг центра масс. Но давайте мыслить шире - что будет, если пролететь мимо нейтронной звезды, как пролетал герой Макконахи мимо Гаргантюа (черная дыра) в «Интерстеллар»? Будет ускорение примерно в 1/3 скорости света. Так что будь у нас в распоряжении подходящий корабль и нейтронная звезда, то такой катапультой можно было бы запустить корабль в район Проксима Центавра всего за 12 лет. Но это пока только буйная фантазия.

Маневры «Вояджера»

Говоря в начале статьи о том, что мы не будем петь гимны «Вояджеру», я слукавил. Самый быстрый и самый далекий аппарат человечества, еще и празднующий 40 лет в этом году, согласитесь, достоин упоминания.

Сама идея отправиться к дальним планетам стала возможной благодаря гравитационным маневрам. Было бы несправедливо не упомянуть тогда еще аспиранта Калифорнийского университета в Лос-Анджелесе (UCLA) Майкла Миновича, который рассчитал последствия гравитационной пращи и убедил профессоров Лаборатории реактивного движения, что даже на имевшихся в 60-х годах технологиях можно полететь к дальним планетам.

Фотография Юпитера, сделанная “Вояджером”

Просмотров